3.39 \(\int x^2 \sqrt {a x+b x^3} \, dx\)

Optimal. Leaf size=281 \[ -\frac {2 a^{9/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a x+b x^3}}+\frac {4 a^{9/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a x+b x^3}}-\frac {4 a^2 x \left (a+b x^2\right )}{15 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}+\frac {2}{9} x^3 \sqrt {a x+b x^3}+\frac {4 a x \sqrt {a x+b x^3}}{45 b} \]

[Out]

-4/15*a^2*x*(b*x^2+a)/b^(3/2)/(a^(1/2)+x*b^(1/2))/(b*x^3+a*x)^(1/2)+4/45*a*x*(b*x^3+a*x)^(1/2)/b+2/9*x^3*(b*x^
3+a*x)^(1/2)+4/15*a^(9/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4
)))*EllipticE(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1
/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^3+a*x)^(1/2)-2/15*a^(9/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2
)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2
)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^3+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.412, Rules used = {2021, 2024, 2032, 329, 305, 220, 1196} \[ -\frac {4 a^2 x \left (a+b x^2\right )}{15 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}-\frac {2 a^{9/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a x+b x^3}}+\frac {4 a^{9/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a x+b x^3}}+\frac {2}{9} x^3 \sqrt {a x+b x^3}+\frac {4 a x \sqrt {a x+b x^3}}{45 b} \]

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[a*x + b*x^3],x]

[Out]

(-4*a^2*x*(a + b*x^2))/(15*b^(3/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[a*x + b*x^3]) + (4*a*x*Sqrt[a*x + b*x^3])/(45*b)
 + (2*x^3*Sqrt[a*x + b*x^3])/9 + (4*a^(9/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*
x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(15*b^(7/4)*Sqrt[a*x + b*x^3]) - (2*a^(9/4)*Sqrt[x]
*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)]
, 1/2])/(15*b^(7/4)*Sqrt[a*x + b*x^3])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2021

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*(m + n*p + 1)), x] + Dist[(a*(n - j)*p)/(c^j*(m + n*p + 1)), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int x^2 \sqrt {a x+b x^3} \, dx &=\frac {2}{9} x^3 \sqrt {a x+b x^3}+\frac {1}{9} (2 a) \int \frac {x^3}{\sqrt {a x+b x^3}} \, dx\\ &=\frac {4 a x \sqrt {a x+b x^3}}{45 b}+\frac {2}{9} x^3 \sqrt {a x+b x^3}-\frac {\left (2 a^2\right ) \int \frac {x}{\sqrt {a x+b x^3}} \, dx}{15 b}\\ &=\frac {4 a x \sqrt {a x+b x^3}}{45 b}+\frac {2}{9} x^3 \sqrt {a x+b x^3}-\frac {\left (2 a^2 \sqrt {x} \sqrt {a+b x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {a+b x^2}} \, dx}{15 b \sqrt {a x+b x^3}}\\ &=\frac {4 a x \sqrt {a x+b x^3}}{45 b}+\frac {2}{9} x^3 \sqrt {a x+b x^3}-\frac {\left (4 a^2 \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{15 b \sqrt {a x+b x^3}}\\ &=\frac {4 a x \sqrt {a x+b x^3}}{45 b}+\frac {2}{9} x^3 \sqrt {a x+b x^3}-\frac {\left (4 a^{5/2} \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{15 b^{3/2} \sqrt {a x+b x^3}}+\frac {\left (4 a^{5/2} \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{15 b^{3/2} \sqrt {a x+b x^3}}\\ &=-\frac {4 a^2 x \left (a+b x^2\right )}{15 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}+\frac {4 a x \sqrt {a x+b x^3}}{45 b}+\frac {2}{9} x^3 \sqrt {a x+b x^3}+\frac {4 a^{9/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a x+b x^3}}-\frac {2 a^{9/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{7/4} \sqrt {a x+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 80, normalized size = 0.28 \[ \frac {2 x \sqrt {x \left (a+b x^2\right )} \left (\left (a+b x^2\right ) \sqrt {\frac {b x^2}{a}+1}-a \, _2F_1\left (-\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {b x^2}{a}\right )\right )}{9 b \sqrt {\frac {b x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[a*x + b*x^3],x]

[Out]

(2*x*Sqrt[x*(a + b*x^2)]*((a + b*x^2)*Sqrt[1 + (b*x^2)/a] - a*Hypergeometric2F1[-1/2, 3/4, 7/4, -((b*x^2)/a)])
)/(9*b*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {b x^{3} + a x} x^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x^3+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a*x)*x^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b x^{3} + a x} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x^3+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^3 + a*x)*x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 197, normalized size = 0.70 \[ \frac {2 \sqrt {b \,x^{3}+a x}\, x^{3}}{9}+\frac {4 \sqrt {b \,x^{3}+a x}\, a x}{45 b}-\frac {2 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) a^{2}}{15 \sqrt {b \,x^{3}+a x}\, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*x^3+a*x)^(1/2),x)

[Out]

2/9*x^3*(b*x^3+a*x)^(1/2)+4/45*a*x*(b*x^3+a*x)^(1/2)/b-2/15*a^2/b^2*(-a*b)^(1/2)*((x+(-a*b)^(1/2)/b)/(-a*b)^(1
/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)/(b*x^3+a*x)^(1/2)*(-2*(-
a*b)^(1/2)/b*EllipticE(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))+(-a*b)^(1/2)/b*EllipticF(((x+(-a
*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b x^{3} + a x} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x^3+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^3 + a*x)*x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x^2\,\sqrt {b\,x^3+a\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a*x + b*x^3)^(1/2),x)

[Out]

int(x^2*(a*x + b*x^3)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \sqrt {x \left (a + b x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(b*x**3+a*x)**(1/2),x)

[Out]

Integral(x**2*sqrt(x*(a + b*x**2)), x)

________________________________________________________________________________________